MODERN SPECTRUM ANALYSIS

e Methods based on linear models
— AR
— MA

— ARMA

e AR method and Maximum Entropy

e "Maximum Likelihood" method
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MODERN SPECTRUM ANALYSIS (cont’d.)

e Subspace methods
— Pisarenko
— MUSIC
— Minimum Norm
— Principal Components Linear Prediction

— ESPRIT
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LIMITATIONS OF CLASSICAL METHODS

e Classical methods are limited in resolution by the data length.

Transform of
window

True spectrum

BV

-

w

w

Expected value
of estimated
spectrum

RN

W

e Methods based on a model for the process can overcome this

limitation.
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SPECTRAL ESTIMATION USING A LINEAR
MODEL

MODEL FOR THE PROCESS

White noise
win] —e= H_(2) ——® zn]
S, (&) =K, S,(2) =K, - H.(2dH,(1/27)

SPECTRAL ESTIMATE

S(e™) = Ko |Hea(e?)|?
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FORMS OF SPECTRAL ESTIMATES

AR
2
Sar(e™) = |A‘(begf)|2 - |A(Z§")|2
MA
Surae™) = [B(eM))?
ARMA

B(e)|?

A(eIw)

Sarma(e’) = '
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SPECTRUM ESTIMATION BY AR MODELING

LINEAR PREDICTION

7[n]
o A(2) » £[7]

Var[e[n]] =03

AR MODELING

win] - A(lz) = 71'[n] MII

Var [ujn]] =0} 2

o
S (€)= Sy (e2) = 7o
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PROPERTIES OF THE AR MODEL

CORRELATION MATCHING
R[] =Rg[l]; 1=0,+1,42,...,+P

CORRELATION EXTENSION

Rx/[l] + ale/[l — 1] -+ asz/[l — 2] + -+ apr/[l — P] = wa/[l]
N——
0 for (>0
—

Rx/[l] = —ale/[l — 1] — ang/[l — 2] — e = apr/[l — P], [>0
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MATCHING AND EXTENSION OF
THE CORRELATION FUNCTION

R,[l]

-?T??T---TI IT---I?TTT---Z

-P+H-Pp-- -2 -1 101 2 -+ PP+1
- - - -
AR model matches Extended
these values values
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MAXIMUM ENTROPY PROPERTY

e T he AR model of order P matches the correlation function
up to lag P.

e [ he AR model extends the correlation function in a way to
maximize entropy of the resulting process.

In other words ...

e Of all processes that could match and extend the given
correlation function, the AR process is the process with
maximum entropy.
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PROOF OF MAXIMUM ENTROPY

The entropy for p4+ 1 samples of a zero-mean complex Gaussian
random process is

Hp =E{~In fz,(zp)} = (0 + 1)(1 +In7) + In |RY|
where

[ Rz[0] Rz[—1] oo Ry[—p]
R(P) __ | Re[1] Rz[O] o Re[—p+1]
T s P
| Rzlp] Rzlp—1] --- Rz[0] |
e Have terms R.[0], Rz[1],..., Rz[P].

e Need to choose R;[P + 1], Rx[P + 2],... to maximize Hp

for all values of p.
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PROOF OF MAXIMUM ENTROPY (cont’d.)

First choose R:;[P + 1] to maximize |R§BP+1)|:

Rx[]-] Rx[o] RZE[_P —I_ 1] Rx[_P]
RV = | 5 I :
Rx[P] Rx[P _ 1] Rx[o] Rx[_l]
Rx[l] Rx[o] Rx[_P + 1]
= R;[P + 1]<_1)P+1 Rx[P] Rx[P . 1] Rx[O]

-+ other terms
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PROOF OF MAXIMUM ENTROPY (cont’'d.)

A necessary condition for the maximum is

Rx[l] Rx[o] U Rx[_P + ]—]
VR;[P+1]|R§BP+1)| = (—1)7t? Rx[P] Rx[P 1] Rx[O] =0

_It can be shown that this condition indeed produces a maximum,
l.e.,

2 2 2 2
(VarREV)) - (VR RET)) - (VerRETV)) <o

and
2 P+1
VR,TR;|R§1: <o

(see text).
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PROOF OF MAXIMUM ENTROPY (cont’'d.)

Since the determinant is zero, the columns are linearly
dependent.

[ R.[1] R,[0] o Ry[-P+1]1 | [1 ] [o]
}Ex[P] }zx[p_ 1] :Rx[O] sl =0
i R:[P+ 1] R.[P] o Re[1] | | P | i 0 i

If a top row is added. . .

I Rx[o] Rx[_]-] U Rx[_P] | _ - [ 0° ]
Rx[]-] Rx[o] U Rx[_P + 1] 1 0
R.[P) RJP -1 - R0] =10

mip+y miP) - om0 Lo

this defines the AR model and extension of R; to R;[P + 1].
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PROOF OF MAXIMUM ENTROPY (cont’'d.)

A repetition of the analysis for extension to R;[P + 2] leads to

[ Rx[o] Rx[_]-] s Rx[—P — 1] 1 r 1 . [ 52 7
RJP+1] RfP] - Ru0] .| T o
RAP+2] RJ[P+1) - R L%l o
This can be satisfied by taking 1 =¢3,...,dp =cp,dpy1 =0.

The bottom row then provides the correlation extension

This procedure is continued to find Ry[P + 3], Rz[P + 4], ...
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BURG'S PROOF OF MAXIMUM ENTROPY

e Start with the entropy (per sample) for a Gaussian process

1 T
AH = —/ InS_/(e!)dw 4 const.
21 J—x

e Maximize this subject to constraints
1 7 I
R[] = —/ S (M)’ dw = Ryll] 1 1=0,+1,...,+P
21 J—7
e Show that an all-pole model is required

e Show that the all-pole model is the AR model
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BURG’'S PROOF (cont’'d.)

T he necessary condition for a maximum is

1 7 1
R;k;/[l]A 2 /_w S(e1?) < R;/[Z]Sx/(e )> do=0: JI>P

Note that S,/(e!) can be written as

O 00
_- . /
) Z R_/[k]e Jwk :k/ E: R;/[k/]ejwk —— V ;,[Z]Sx’(ejw) — pJwl
= — —— 00

Therefore

ldw=0; |lI|>P

Vo I AH = /W 1
iy T 2 x S, (ev)
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BURG’'S PROOF (cont’'d.)

The condition

vR;Z/[l]AH = eldw =g[l] =0 ; | > P

1 /W 1
27 —Tr Sx/<63w)

states that the sequence g[l] with transform 1/S.,(z) has finite
length, Ji.e.,
1 Ko

S pdll - (Shogen ™) (Shoa)

(co=1)

S.(z) =

Therefore the process can be modeled as white noise driving
the all-pole filter

1

n=0Cnz "

Heo(2) =
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BURG’'S PROOF (cont’'d.)

The form of the power spectral density implies

Ko
Zﬁzo cpz” "

P
= (Z c}izk> S(z) = Z ckzk Z R, 1]z~
k=0

[=—0o0

00 P
= Y (Z iRyl + k]) 2 (I'=1-k)

!=—00 \k=0

00 P * )
— Z ( Z Cka/[—l, — k]) Z_l

I'=—00 \k=0

0 forl! <0
Ko forl! =0

g
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BURG’'S PROOF (cont’'d.)
Finally, the last condition

P
Y Ryl — k] =

{ Ko forl! =0
k=0

0O forl' <O

and the requirement R_/[l] = Rg[l] for |I| < P produces the
Yule-Walker equations for the AR model

| Rz[0] Rz[-1] Ry [—P] 1 Ko
Ry(1]  Ry[O] Ry[—-P + 1] Cc1 0
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“MAXIMUM ENTROPY” SPECTRUM
ESTIMATION

e “"Maximum Entropy” is the name given by Burg to his method
of spectrum estimation.

e [ heoretically, any AR spectral estimate is a maximum
entropy spectral estimate.

e In practice, the term is reserved to mean an AR estimate
where the model parameters are computed using Burg’'s method.
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COMPUTATION OF SPECTRAL ESTIMATES

e Efficient model-based spectral estimates can be computed
with the FFT.

e Note that

2 __|FT of sequence {bn}|?
IFT of sequence {an}|?

B(el¥)
A(ev)

S(el¥) =

e The FT can be replaced by the DFT computed with an FFT
program; for purposes of ploting, the DFT order is chosen
to give a smooth plot.
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“MAXIMUM LIKELIHOOD” SPECTRUM
ESTIMATION

e Computed using the correlation matrix for the data

e EXxhibits higher resolution than classical methods
(Bartlett, Blackman-Tukey, etc.)

e Can be related to the "Maximum Entropy’ method

e Also called the “Minimum Variance (Distortionless)” method
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“MAXIMUM LIKELIHOOD” METHOD

SPECTRUM ANALYZER INTERPRETATION

z[n) = h, 1] » y[n]

ML spectral estimate: Sz (elw°) det f{\y[nﬂz}
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ML METHOD DEVELOPMENT

The FIR filter output is

N-1
ylnl = ) hwolklz[n — k] = hoZ[n]
k=0

The filter average power is given by
P =E{ly[n]|?} = h{E{Z[n]#*"[n]} hy = h{Rzh = h§ Raho

This is minimized subject to the (complex) constraint

N-1
Huo(e?°) = >~ huoln]e ™" = wilho = 1
n=0
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ML METHOD (cont’d.)

T he optimization problem involves the Lagrangian

L = h(*)TRmho —|— ,LL<]. — WgTho) —I— ,LL*<]. — hgTWo)

and the necessary condition

Vh(*)ﬁ = Rayho — ,LL*WO =0 = ho = ,LL*R531WO

The requirement wji'ho = M*w;';Tjolwo = 1 then yields

1 R.lw
pt == — so that ho = r 7O
wi R "wo

* T —1
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ML METHOD (cont’d.)

The optimum narrowband filter at frequency wo

he — I{&51VVO
° T WTRSIw
O T o
produces the output power
P = h*"Rzho = WgTRileRa_«/.lWO — 1
° (WETR 3 wo)2 wiTR 7 wo

This is the ML power spectral estimate of the process
at frequency wo.

10-26



“MAXIMUM LIKELIHOOD” METHOD
(SUMMARY)

The “Maximum Likelihood"” spectral estimate is

& 1
Sy () = —TR-Tw
€T

where

Jw

72w

é](N—l)w
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CLASSICAL METHOD COMPARED TO
“MAXIMUM LIKELIHOOD” METHOD

If the Fourier transform of the data sequence is

N—-1
X ) =) znle " =wx
n=0

the periodogram spectral estimate is defined by

_ def 1 1 1
Pr(e¥) = N|X(ejw)\2 = NX(GJW)X*(GJW) = NW*Tma?*TW

The expected value of this estimate is

. 1 " 1
E{Pr(e*)} = —w*'Raw while Syp(e) = e
W W
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RELATION BETWEEN ML AND ME
Use the triangular decomposition to write

T 1 .0 01+ 0 - 077191 ... ... JW-Dx7
alv-u o : L . M

- W : : 1 0 0 % 0 0 ... 1 agl)*
_ag\[Nl) agl) ]__ 0 .- 0 % 0 --- O 1 i

N_1 Zk Oa(p) —jwk

= > 5

p=0 Op

Then ...

5@ S
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SPECTRUM ANALYSIS: COMPARISON

O A ] T L / \ T I T
i : /NN BT .
‘\ ; \ \/Bartlett
.. ML |

: \,"\\— e~0-02! (cos 0.3l + 1= sin 0.3xl)

\ ' 4267904 (o5 0.671 + —Lsin 0.67l)

3 (11 samples)
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COMPUTATION OF THE ML ESTIMATE

FASTEST METHOD:

1. Express the denominator as

N
W*TR531W: > olk]e 9wk
k=—N

where p[k] is the sum of terms on diagonals of R;l

2. Use the FFT to compute this term and take reciprocal
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SUBSPACE METHODS

e Used for estimating discrete components in the spectrum of

z[n] = A1/ 4 Apel2" 4 - ApeMT 4 nn]

where n[n] is white or colored ‘“noise”
e Estimate parameters w; and P; :E{|AZ-|2} 1 =1,2,..., M

e Based on the concept that “signals” s;[n] = A,;e¥i"™ span a
subspace of the vector space of observations

e The conditions E{AiAZ} = E{A;n*[n]} = O (1 = k)
are assumed throughout
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SUBSPACE AND AR MODELS COMPARED

M RTS L L st §

Complex exponential noise

e NI sl a2 K

Pole at 0.995 + 70.0998

SNR 20 dB - WGN - N(0, 0.01)
3000 Points

....... .

Real x[n]

SUBSPACE MODEL
s[n] = as[n — 1]
z[n] = s[n] + w(n]

AR MODEL
s[n] = as[n — 1] + w[n]

x[n] = s[n]
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SIMPLEST PROBLEM

SIGNAL IN WHITE NOISE

Sm(ejw) 27TP
ol = Asln] + nin] )
where s[n] = eJ¥on ’
and A = |A|el? | — w
- wO T

VECTOR FORM AND CORRELATION MATRIX

w=Astn (2= [l0] 2[1] [N —1]]")

Rax

E {AS(AS)*T} +E {nn*T}

Poss*” +031  where PO:E{\A\Q}

10-34



SIMPLEST PROBLEM (cont’d.)

Observe that

e [ he signal vector is an eigenvector of Rg:

Rys = (Poss* 4+ 021)s = Poss™ s + 05s = (NPo + 03 )s

e All other eigenvectors have eigenvalues equal to ag:
Rre;, = Poss*le; +o2e;, = o2e;
£Xr Cy (@) z_l_ O 1 O™

0
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SIMPLEST PROBLEM: SOLUTION

1.

2.

3.

Form the correlation matrix and compute its eigenvalues and
eigenvectors.

Identify the N — 1 smallest eigenvalues. These all have the
same value, o§.

Identify the remaining (largest) eigenvalue. It is equal to
NPo 4+ 02. Knowledge of its value and ¢2 determines Po.

. T he eigenvector corresponding to the largest eigenvalue is

proportional to s = [1 eMo e2wo ... I(N=DLwo |T  This
in principle determines wo.
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TWO SIGNALS IN WHITE NOISE

OBSERVED SEQUENCE

r[n] = Aysi[n] + Agsa[n] + n(n]

where s;[n] = ™™ and A; = |A;|e??

VECTOR FORM AND CORRELATION MATRIX
x = A1s1 + Azsp + 1

Ry = PlslsﬂiT + PQ SQSET + O‘g I where Pi — E{|Az|2}
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TWO SIGNALS IN WHITE NOISE (cont’d.)

e It is possible to find N — 2 eigenvectors orthogonal to both
s1 and so. These all have eigenvalues equal to ag:

Rajei — Plsl SﬂiTei —|—P282 SETGZ' —I—ngei — O'g €;
SN—— SN———

0 0

e Remaining two eigenvectors lie in the subspace spanned by
s1 and so.

e Subspace spanned by si and s, is the signal subspace.
Complementary subspace is called the noise subspace.
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SIGNAL AND NOISE SUBSPACES

Noise Signal subspace

subspace\"-

Illustrated for N = 3
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GENERAL PROBLEM FORMULATION:
M SIGNALS IN WHITE NOISE

OBSERVED SEQUENCE AND VECTOR FORM

M M
z[n] = ) Asiln] + nln] = T=) Asi+n
1=1 i=1

CORRELATION MATRIX

M
Re = Y PisisiT + o021 or Rag =SPoS* + 521
1=1

where
1 o Py o
S= |81 s» -+ Spq and Po = :2 :
B o o ey




RESULTS FOR THE GENERAL PROBLEM

e T he M signal vectors sq,...,s); define the signal subspace.

e The first M eigenvectors of Rg (corresponding to the largest
eigenvalues) span the signal subspace. These eigenvectors
have eigenvalues > o3.

e T he remaining N — M eigenvectors define the noise subspace.

T hese all have eigenvalues equal to ag.

e [he signal and noise subspaces are orthogonal and
complementary.
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SIGNALS IN COLORED NOISE

OBSERVATION VECTOR AND CORRELATION MATRIX

M
£r = Z Aisi —|— mn Rm == SPOS*T —|— O‘g 277

=1

MAHALANOBIS WHITENING TRANSFORMATION

y=3,""2 == Ry=TP.T7 4031, T=3x,"°s

Signal and noise subspace eigenvectors e;C in the transformed
space are represented in the original space by

1/2 /
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WHITENING TRANSFORMATION

—1/2
En

Original
vector space Transformed
vector space
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EIGENVALUE PROBLEM: COLORED NOISE

~1/2

e The eigenvalue problem Rye; = <E R;BZ 1/2 >ejl€ = )\ke;ﬁ

in the transformed space can be replaced by a generalized
eigenvalue problem in the original space

Rgcek — Aanek <Where e — 2;11/26;€>

e [ he signal and noise subspaces are then spanned by the

basis vectors {by,...,by/} and {bp/4;,...,by} respectively,
where

bk=§]77ek, k:1,2,...,N
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MATRICES RELATED TO SUBSPACES

EIGENVECTOR MATRICES

I | | | |
e; ey -+ ey Encise = | €M4+1 €pm42 -+ €N

EIGENVALUE MATRICES

A O 0 a2 0 0
- 2
Asig — O )\:2 . 0 Anoise = 0 O-:O O
| 0 O A 0 O o5 |
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VARIOUS IMPORTANT RELATIONS

EIGENVECTOR AND EIGENVALUE MATRICES

Ag; 0
E = Esig Enoise A= { Szg A ]
noise

CORRELATION MATRIX AND INVERSE

Rx = EsigAsigE*T _I'EnoiseAnoiseE*T

519 noise

R{;l EsigA_lE*T + EnoiseA_l E;,

s1g-—s1g noise —noise

PROJECTION MATRICES

Psz'g — EsigE*T P oise = EnoiseE*T =1- Psz'g

519 noise
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PARTICULAR SUBSPACE METHODS

e Pisarenko Harmonic Decomposition

e MUSIC

e Minimum Norm

e Principal Components Linear Prediction

o ESPRIT
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PISARENKO HARMONIC DECOMPOSITION

Assume M signals with unknown frequencies wi,wo,...,w)s-

Take N = M 4+ 1 and note that e, is orthogonal to each signal
vector s;.

1 1
eJw eIWi

Since w = | eJ2v while s; = | el2wi
QJ(N_]-)W ej(N_]-)wZ

it follows that

w ey =0; i=1,2,.... M

wzwi
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PISARENKO PSEUDOSPECTRUM

£, (e)
_ 1
Jw —

. 1

- wTeyelw \J
! L
i — g

0 W Wy Ws

This function peaks at the signal frequencies.
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PISARENKO - ROOT METHOD

Define the eigenfilter

En(z) = en[0] +en[1]z7 4+ -+ en[N — 1]~V

where the ep[n] are components of the eigenvector ey.

Then
EN<6]w) == W*TeN

which goes to zero for w = wj,wop,...,wps. T herefore ...
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PISARENKO - ROOT METHOD (cont’d.)

e The M roots of En(z) occuring on the unit circle correspond
to the signal frequencies wq,wo,...,w)s.

e The pseudospectrum can also be written in terms of En(z)
as

1 1
[Ex(e)2  En(e%)E% (e+)
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SIGNAL POWER ESTIMATION (M = 2)

Write

ei’Ree; = Prejlsysite; + Poejlsoshler + o2 = M\

eETRajez — PleETsls’iTeQ + PQGETSQSETGQ + O'g

|
>
N

These are linear equations of the form

2 2 P )\ _02 *
R R ][0 (] e =i,

These can be solved for Py and P».
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MUSIC (MULTIPLE SIGNAL CLASSIFICATION)
e Uses correlation matrix of any size N > M +1

e Can be used to estimate the number of signhals M

AI
—— /\2
— AM

ok
T )‘M+l AN i

i ] L 1 *
LI L)

Signal Noise
eigenvalues eigenvalues
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MUSIC: FREQUENCY ESTIMATION

PSEUDOSPECTRUM

1 1 1

Py (e) = = =
W*TPnoz'seW W*TEnoiseE;;z;z‘sgw 27];\[:]\44_1 |Ei<€jw>|2

ROOT METHOD (ROOT MUSIC)

Find roots of polynomial
Pip()= Y E()E}(1/z%)

i=M+1
lying on the unit circle, where FE;(z) is an eigenfilter.

Remaining roots are called “spurious.”
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MUSIC VARIATION

An alternative pseudospectrum can be defined as

1

*T (NN 1 T
W (i1 X, W

p],WU<6Jw) —

2

is i i %9 hich differs
In theory, this is equivalent to W*T(va:M+1eiejT)w whi |

from the regular MUSIC pseudospectrum by only a constant.

In practice, however, by using the estimated eigenvalues Ay, ... An
the performance is sometimes inproved.
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COMPARISON OF METHODS

Maximum Likelihood — Sy;7(e%) = *T;{_l
A\%\% mW

2
ON—-1

*T

Maximum Entro S W) =
py Sup(e?) = G mT

MUSIC Pl (ev) = 1

T *T
w3 M—I—l)\ee

W

e All represent different decompositions of the inverse correlation
matrix!
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MINIMUM-NORM PROCEDURE

e T he frequency vector w is projected onto a single vector d
lying in the noise subspace. The vector d is chosen to have
minimum norm ||d|| subject to the constraint d[0] = 1.

e If the noise subspace eigenvector matrix is partitioned as

c*T 1
E,vise = then d=

/ / T
i Enoise i i Enoisec/(c* C) i

e d can also be interpreted as the total least squares solution
to the linear prediction problem for the data [Dowling and
DeGroat, 1991].
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MINIMUM-NORM: FREQUENCY ESTIMATION
PSEUDOSPECTRUM

_ def 1 1 L
Jwy E = —
Pyn(e?) = |W>|<Td|2 - wldd*Tw |D(eﬂw)‘2

ROOT METHOD

Find roots of the polynomial

N—-1
D(z)= Y d[k]z""
k=0

lying on the unit circle (d[k] are components of d).
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WHY MINIMUM NORM?

The polynomial D(z) can be factored as

D(z) = D1(2) - D2(2)
where

- D1(2z) has roots only on the unit circle (due to signals)

- D>(z) has roots only within the unit circle (spurious roots)

In other words, D>(z) is a minimum-phase polynomial.

The roots of D>(z) are approximately uniformly distributed around
the inside of the unit circle, away from the roots of Dq(z).
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MINIMUM-NORM SOLUTION
(GENERAL PROCEDURE)

e It is desired to minimize |d|? = d*Td

e Constraints are

d=P,,..d=E, ..El.._d and d*ft =1

noise

e Form the Lagrangian

L=d"d+ p(l — d*TEnoiseE*T L) + 1 (1~ LTEnoiseE*T d)

noise noise

e Set Vg4+«£ = 0 and solve for d (see text for details).
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PRINCIPAL COMPONENTS
LINEAR PREDICTION

e Principal components methods use the principal components
approximation to the correlation matrix, or its principal
components inverse

M M
M) def M 1
R:(B ) &€ d " Nejer! RZBH ) — > —)\-eieffT

e The Principal Components Linear Prediction method [Tufts
and Kumaresan, 1982] exploits this technique to produce
a highly effective procedure for the estimation of complex
exponentials (or sinusoids) in noise.
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LINEAR PREDICTION FOR COMPLEX
EXPONENTIAL SIGNALS AND NO NOISE

CORRELATION MATRIX NORMAL EQUATIONS
M

Rm = Rs = Z PZ'SZ'S%FT = S*TPOS Rg;a =0
1=1

e a iS an eigenvector corresponding to eigenvalue A\ = 0.

e a lies in the noise subspace (sj'a = 0).

e [ he "noise subspace” is the null space of Ryg.
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LINEAR PREDICTION: NO NOISE (cont’'d.)

e [ he prediction error filter suggests a pseudospectrum

11
wTal2  |A(er)|?

paj(e']w) —

which peaks at the desired frequencies.

e For N > M + 1 the Normal equations Rga = 0 have
multiple solutions. Choose the minimum-norm solution.
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LINEAR PREDICTION: NO NOISE (cont’d.)
MINIMUM-NORM SOLUTION

By dropping the top row of the matrix Rge and defining

a— the Normal equations Rga =0 can be reduced to

)
Rya = —r

The minimum-norm solution can then be expressed as

M e/ *Ty
a’z—Rg_rz—Z ( ZA’ )efb-

1=1 1
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LINEAR PREDICTION WITH NOISE

The Normal equations Rga = o2¢ have the solution

, P e/ *Ty ,
az—Z(&,)eﬂ P=N-1
=1 1

The PCLP method instead uses

M I%T
a/ — Z <e’l,)\/' I‘) e; — —R,a;I_(M>r
1

1=1

If noise power is not too large, eigenvectors efL. fore=1,2,...

are approximately the same as without noise.

, M
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PCLP: FREQUENCY ESTIMATION
PSEUDOSPECTRUM

1 1

p elV) = =
Perr(e) = e T AP

with a=[1 a7]" and a’ = —Rgl_(M>r.
ROOT METHOD

Find roots lying on the unit circle of
P
A(z) = > akz_k
k=0
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TEST CASE: LP VS PCLP

e Data: x[n] = e/1:00mn+tm/44 o91.04mn 4 plp]: Ny = 25 samples

n[n] is white noise with SNR = —10log1gc3 = 10dB.

e Roots of A(z) are plotted for various prediction orders P
using the modified covariance method (50 trials per plot).

e For P = Ns;— M/2 the rank of R/, is reduced to M (= 2).
This is called the “Kumaresan-Prony” case.

e Recommended prediction order for PCLP is P = %NS.
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LINEAR PREDICTION RESULTS
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PCLP RESULTS FOR M =2
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PCLP PSEUDOSPECTRA FOR P =18

30.0
dB

~10.0 {1
0.0 FREQUENCY (o) T
30.0
dB
M=4
~10.0 1
0.0 FREQUENCY (®) m

=1

e

30.0
dB
M=2
~10.0 1t
0.0 FREQUENCY (©) n
30.0
dB
M= 18
~10.0 Hi
0.0 FREQUENCY (®) r
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ESPRIT

(ESTIMATION OF SIGNAL PARAMETERS VIA
ROTATIONAL INVARIANCE TECHNIQUES)

e EXploits an invariance principle that naturally exists for
discrete time signals

e Original technique described first to motivate the method

e Current TLS version then described
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ESPRIT SIGNAL MODEL

z[n]

o ’mmI[L

xr = % Aisi+ 7' 0
S/ //
/ .

T
Note that s/ = { ewi el2wi ... eINw; } = eMWis;

[
=
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ESPRIT FORMULATION

M
Re = Y Pis;si’ + 021 = SPoS* + 051

i=1
M
RCBZE’ — Z Pie_jwiSiS%FT + O‘%D_l — SPo(I)*S*T + O‘%D_l
i=1
where
[ et 0 0 | (0 0 --- 0
Jw2
e D=, ° 0
I 0 O erM_ _0 1 0_
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IDENTIFYING THE FREQUENCIES

Form Rs & Rg — 081 = SP,S*T
and Rgy = Ry — 02D_; = SPo®*S*T
‘Then consider

Rsé — ARgq€& = SPo(I - \®*)S*é&

[ ]_ = \)/\e_]wl « e O
= SPo ? o C:) S*Te =0
I 0 0 1 — de WM |

Since A, = ek reduces the rank of this matrix, X\; is a
generalized eigenvalue of

Rse = )\RSS/e
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ESPRIT FREQUENCY ESTIMATE RESULTS

N=7

SNR = 20 dB
Frequency values:

w1 = 0.107
wo = 0.127
w3z = 0.227

O True values

T T T T

100 Trials

M |

—

0.2

0.4

Re

0.6

0.8



PROBLEM WITH ORIGINAL FORMULATION

e The matrices Rs and Rgg are not of full rank and have
identical null spaces. Therefore the generalized eigenvalue
problem

IS ill-posed.

e Since the matrices are not of full rank, the eigenvalues X\
corresponding to “eigenvectors” € in the null-space of these
matrices can assume any value — and so are not defined!

e In practice, Rs and Rgg may not have zero rank, but will
be at least poorly conditioned.
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TLS ESPRIT

e EXxploits an invariance property of the signal subspaces similar
to the invariance property of Rs and Rgg.

e Relates to the theory of a matrix “pencil”’ and rank-reducing
numbers.

e A l|east squares version of ESPRIT is also possible but the
total least squares version is preferable.
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DEFINITION OF EXPANDED VECTORS

z[n]

,[IITTTI[L

1 N-1 n

//
/

7/

e [ he overbar will be used to refer to quantities relating to the

expanded vectors.
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APPLICATION OF INVARIANCE

The signal subspace is spanned by columns of the matrix

|
S = S1 So -+ Spg
|

SP

Any other set of basis vectors for the signal subspace

B =

can be related to S by a nonsingular transformation

BY =S

|
by,
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APPLICATION OF INVARIANCE (cont’d.)

The relation BY =S can be written in two forms:

we]
-
|
-
|

and

o]
=2
|
-
|

B’ . S®
Thus
BY=S»=(BY)® — BYT=BY®

The last equation can be rewritten as . ..
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ESPRIT FUNDAMENTAL RELATIONS

INVARIANCE OF SUBSPACES

BV = B’ (solve for W)

EIGEN-DECOMPOSITION OF TRANSFORMATION

U =YpY !

e Eigenvalues of ¥ have the form el¥“k
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IMPLEMENTATION OF ESPRIT

e Basis vectors B can be found as eigenvectors of the
correlation matrix, a la MUSIC.

e In theory the invariance relation
BY = B’

is satisfied exactly. In practice, this is an overdetermined set
of linear equations.

e | east squares solution produces LS version; total least squares
solution leads to TLS version of ESPRIT.
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TLS ESPRIT SOLUTION

The TLS problem associated with ESPRIT is to find W in the
equation

(B-A)Y =B - A’
to minimize H A A HF
(This is a generalization of the TLS problem described earlier.)

Vi1 Vio

Define V =
Vo1 Voo

as the matrix of right singular vectors of the matrix { B B’ }

The TLS solution is given by Wprq = —V12V2_21.
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ESPRIT ALGORITHM SUMMARY

1. Define the N 4+ 1-dimensional random vector x pertaining
to N 4+ 1 consecutive data samples z[0],z[1],...,z[N] and
estimate the correlation matrix f{,ﬁ from the data. [Usually
the covariance method or the modified covariance method
should be used here, especially if the total length of the data

record (Ns) is small.]

2. Compute the generalized eigenvectors and eigenvalues of f{@:

Rjék:XkZﬁék k=1,2,.... N+1

3. If necessary, estimate the number of signals M.

10-84



ESPRIT (cont’d.)

4. Generate a basis spanning the signal subspace and partition
it as

| | YRR % 13’

5. Compute the matrix V of right singular vectors of
B B
and partition V into four M x M submatrices

Vi1 V1o
V =
{V21 Voo
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ESPRIT (cont’d.)

6. Compute the eigenvalues X\q,XAo,..., Ay Of the matrix
Urrs=-Vi2Vyy.

7. Find the desired frequencies as

wkzl)\k k:].,Q,...,M
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“SIGNAL COPY” FEATURE OF ESPRIT

e Estimates for the signal amplitudes can be made using

-
2 | =wia
| Ay

where

Wso =S5 (578)"

e Estimates approach true values as ag — 0.
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COMPUTATIONAL CONSIDERATIONS
FOR SUBSPACE METHODS

e Avoiding computation of the correlation matrix

— Use of the data matrix and SVD

e Statistical methods for estimating the number of signals

e Evaluating the pseudospectrum
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AVOIDING THE CORRELATION MATRIX

e Eigenvalues/vectors can be found from the SVD of the data
matrix X (assuming Rg = X*'X)

e For PCLP the filter coefficients can be found from

a = —Xj_(M)XO where X = | xg Xj

and XiHM) denotes the rank M pseudoinverse of Xj.

For the Kumaresan-Prony case a simple computation is
M _
XM = xF = x5 (X, X57) !
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STATISTICAL ESTIMATION OF M

1. Find M to minimize either AIC or MDL.:

AIC(M) = —2K(N — M)Ino(M) +2M(2N — M)
MDL(M) = —K(N-—M)Ino(M)+3M(2N - M)InK
where
o(M) = (A1 42+ AN)ﬁ

ﬁ(AM-H +>\M+2+“°+>\N)

2. Estimate the noise power as

2= <>\M+1+>\M+2+---+>\N>

T N_Mm
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COMPUTING THE PSEUDOSPECTRUM

e For estimates involving a single vector, use FFT of vector.

Example:

1

W Td]? Compute FFT{d[n]}
W

Pyn(e?) =

e For estimates involving a matrix, such as
1

W*TPnoiseW

Pyy(e?) =

use procedure similar to computation of the ML spectral
estimate.
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